Zusammenfassung
Molekulare Formen des prostataspezifischen Antigens (PSA) und des freien PSA (fPSA)
wie das prozentuale freie PSA (%fPSA), proPSA, intaktes PSA oder das BPHA und andere
neue Marker können die diagnostische Spezifität des PSA verbessern. Bei vielen der
neuen Marker wie EPCA2 im Serum oder Annexin A3 (ANXA3) im Urin konnten die ersten
guten Ergebnisse bisher noch nicht bestätigt werden bzw. es zeigte sich nur eine
marginale Verbesserung der Spezifität. Andere Urinmarker wie das PCA3 oder das TMPRSS2-ERG
Genfusionsprodukt haben das Potenzial, bevorzugt aggressive Tumoren zu entdecken und
die Rate unnötiger Prostatabiopsien zu senken. Die Kombination dieser neuen Urinmarker
mit etablierten Serummarkern könnte zukünftig eine weitere Spezifitätsverbesserung
des Gesamt-PSA (tPSA) bewirken. Durch den Einsatz multivariater Modelle wie z. B.
artifizielle neuronale Netzwerke (ANN) oder auf logistischer Regression (LR) basierte
Nomogramme, die eine kombinierte und gleichzeitige Bewertung verschiedener Marker
ermöglichen, ist in dieser Hinsicht ein weiterer Fortschritt zu erzielen. Diesen
deutlichen Vorteil der multivariaten Bewertung gegenüber der Anwendung einzelner Parameter
hat bereits die Nutzung des %fPSA innerhalb von ANN- und LR-Modellen gezeigt. In dieser
Übersichtsarbeit werden neue Marker zur Detektion des Prostatakarzinoms (PCa) und
deren Einsatz innerhalb multivariater Modelle eingeschätzt.
Abstract
The specificity of PSA has been enhanced by using molecular forms of PSA and free
PSA (fPSA) such as percent free PSA (%fPSA), proPSA, intact PSA or BPHA and / or new
serum markers. Most of these promising new serum markers like EPCA2 or ANXA3 still
lack confirmation of the outstanding initial results or show only marginally enhanced
specificity at high sensitivity levels. PCA3, TMPRSS2-ERG, and other analytes in urine
collected after digital rectal examination with application of mild digital pressure
have the potential to preferentially detect aggressive PCa and to decrease the number
of unnecessary repeat biopsies. The combination of these new urinary markers with
new and established serum markers seems to be most promising to further increase specificity
of tPSA. Multivariate models, e. g., artificial neural networks (ANN) or logistic
regression (LR) based nomograms have recently been performed by incorporating these
new markers in several studies. There is generally an advantage to include the new
markers and clinical data as additional parameters to PSA and %fPSA within ANN and
LR models. Results of these studies and also unexpected pitfalls are discussed in
this review.
Schlüsselwörter
Prostatakarzinom - Diagnostik - PSA - Biomarker - multivariate Modelle
Key words
prostate cancer - diagnosis - PSA - biomarkers - multivariate models
Literatur
1
Jemal A, Siegel R, Ward E et al.
Cancer statistics, 2008.
CA Cancer J Clin.
2008;
58
71-96
2
Aus G, Damber J E, Khatami A et al.
Individualized screening interval for prostate cancer based on prostate-specific antigen
level: results of a prospective, randomized, population-based study.
Arch Intern Med.
2005;
165
1857-1861
3
Postma R, Schroder F H, van Leenders G J et al.
Cancer detection and cancer characteristics in the European Randomized Study of Screening
for Prostate Cancer (ERSPC) – Section Rotterdam. A comparison of two rounds of screening.
Eur Urol.
2007;
52
89-97
4
Thompson I M, Pauler D K, Goodman P J et al.
Prevalence of prostate cancer among men with a prostate-specific antigen level < or = 4.0 ng
per milliliter.
N Engl J Med.
2004;
350
2239-2246
5
Stamey T A, Caldwell M, McNeal J E et al.
The prostate specific antigen era in the United States is over for prostate cancer:
What happened in the last 20 years?.
J Urol.
2004;
172
1297-1301
6
Schroder F H, Roobol M J, van der Kwast T H et al.
Does PSA velocity predict prostate cancer in pre-screened populations?.
Eur Urol.
2006;
49
460-465
7
Thompson I M, Ankerst D P, Chi C et al.
Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial.
J Natl Cancer Inst.
2006;
98
529-534
8
Berger A P, Deibl M, Strasak A et al.
Large-scale study of clinical impact of PSA velocity: long-term PSA kinetics as method
of differentiating men with from those without prostate cancer.
Urology.
2007;
69
134-138
9
Loeb S, Roehl K A, Catalona W J et al.
Prostate specific antigen velocity threshold for predicting prostate cancer in young
men.
J Urol.
2007;
177
899-902
10
Mistry K, Cable G.
Meta-analysis of prostate-specific antigen and digital rectal examination as screening
tests for prostate carcinoma.
J Am Board Fam Pract.
2003;
16
95-101
11
Draisma G, Boer R, Otto S J et al.
Lead times and overdetection due to prostate-specific antigen screening: estimates
from the European Randomized Study of Screening for Prostate Cancer.
J Natl Cancer Inst.
2003;
95
868-878
12
Schroder F H, Hugosson J, Roobol M J et al.
Screening and prostate-cancer mortality in a randomized European study.
N Engl J Med.
2009;
360
1320-1328
13
Andriole G L, Grubb III R L, Buys S S et al.
Mortality results from a randomized prostate-cancer screening trial.
N Engl J Med.
2009;
360
1310-1319
14
Vis A N, Hoedemaeker R F, Roobol M et al.
Tumor characteristics in screening for prostate cancer with and without rectal examination
as an initial screening test at low PSA (0.0–3.9 ng / ml).
Prostate.
2001;
47
252-261
15
Lilja H, Ulmert D, Vickers A J.
Prostate-specific antigen and prostate cancer: prediction, detection and monitoring.
Nat Rev Cancer.
2008;
8
268-278
16
Loeb S, Catalona W J.
Prostate-specific antigen in clinical practice.
Cancer Lett.
2007;
249
30-39
17
Schroder F H, Carter H B, Wolters T et al.
Early detection of prostate cancer in 2007. Part 1: PSA and PSA kinetics.
Eur Urol.
2008;
53
468-477
18
Stephan C, Buker N, Cammann H et al.
Artificial neural network (ANN) velocity better identifies benign prostatic hyperplasia
but not prostate cancer compared with PSA velocity.
BMC Urol.
2008;
8
10
19
Sardana G, Dowell B, Diamandis E P.
Emerging Biomarkers for the Diagnosis and Prognosis of Prostate Cancer.
Clin Chem.
2008;
54
1951-1960
20
Herawi M, Epstein J I.
Immunohistochemical antibody cocktail staining (p63 / HMWCK / AMACR) of ductal adenocarcinoma
and Gleason pattern 4 cribriform and noncribriform acinar adenocarcinomas of the prostate.
Am J Surg Pathol.
2007;
31
889-894
21
Harden S V, Sanderson H, Goodman S N et al.
Quantitative GSTP1 methylation and the detection of prostate adenocarcinoma in sextant
biopsies.
J Natl Cancer Inst.
2003;
95
1634-1637
22
Reynolds M A, Kastury K, Groskopf J et al.
Molecular markers for prostate cancer.
Cancer Lett.
2007;
249
5-13
23
Wright J L, Lange P H.
Newer potential biomarkers in prostate cancer.
Rev Urol.
2007;
9
207-213
24
Laxman B, Morris D S, Yu J et al.
A first-generation multiplex biomarker analysis of urine for the early detection of
prostate cancer.
Cancer Res.
2008;
68
645-649
25
Vener T, Derecho C, Baden J et al.
Development of a multiplexed urine assay for prostate cancer diagnosis.
Clin Chem.
2008;
54
874-882
26
Reynolds M A.
Molecular alterations in prostate cancer.
Cancer Lett.
2008;
271
13-24
27
Tomlins S A, Rhodes D R, Perner S et al.
Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer.
Science.
2005;
310
644-648
28
Tomlins S A, Laxman B, Dhanasekaran S M et al.
Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in
prostate cancer.
Nature.
2007;
448
595-599
29
Demichelis F, Fall K, Perner S et al.
TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting
cohort.
Oncogene.
2007;
26
4596-4599
30
Laxman B, Tomlins S A, Mehra R et al.
Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate
cancer.
Neoplasia.
2006;
8
885-888
31
Groskopf J, Siddiqui J, Aubin S MJ et al.
Feasibility and clinical utility of a TMPRSS2:ERG gene fusion urine test [Abstract].
Eur Urol Suppl.
2009;
8
195
32
Morris D S, Tomlins S A, Montie J E et al.
The discovery and application of gene fusions in prostate cancer.
BJU Int.
2008;
102
276-282
33
Stenman U H, Leinonen J, Alfthan H et al.
A complex between prostate-specific antigen and alpha 1-antichymotrypsin is the major
form of prostate-specific antigen in serum of patients with prostatic cancer: assay
of the complex improves clinical sensitivity for cancer.
Cancer Res.
1991;
51
222-226
34
Lilja H, Christensson A, Dahlen U et al.
Prostate-specific antigen in serum occurs predominantly in complex with alpha 1-antichymotrypsin.
Clin Chem.
1991;
37
1618-1625
35
De Angelis G, Rittenhouse H G, Mikolajczyk S D et al.
Twenty Years of PSA: From Prostate Antigen to Tumor Marker.
Rev Urol.
2007;
9
113-123
36
Stenman U H, Abrahamsson P A, Aus G et al.
Prognostic value of serum markers for prostate cancer.
Scand J Urol Nephrol Suppl.
2005;
(216)
64-81
37
Stephan C, Jung K, Lein M et al.
PSA and other tissue kallikreins for prostate cancer detection.
Eur J Cancer.
2007;
43
1918-1926
38
Catalona W J, Smith D S, Wolfert R L et al.
Evaluation of percentage of free serum prostate-specific antigen to improve specificity
of prostate cancer screening.
JAMA.
1995;
274
1214-1220
39
Catalona W J, Partin A W, Slawin K M et al.
Use of the percentage of free prostate-specific antigen to enhance differentiation
of prostate cancer from benign prostatic disease: a prospective multicenter clinical
trial.
JAMA.
1998;
279
1542-1547
40
Zhang W M, Finne P, Leinonen J et al.
Characterization and immunological determination of the complex between prostate-specific
antigen and alpha2-macroglobulin.
Clin Chem.
1998;
44
2471-2479
41
Zhang W M, Finne P, Leinonen J et al.
Measurement of the complex between prostate-specific antigen and alpha1-protease
inhibitor in serum.
Clin Chem.
1999;
45
814-821
42
Allard W J, Zhou Z, Yeung K K.
Novel immunoassay for the measurement of complexed prostate-specific antigen in serum.
Clin Chem.
1998;
44
1216-1223
43
Brawer M K, Meyer G E, Letran J L et al.
Measurement of complexed PSA improves specificity for early detection of prostate
cancer.
Urology.
1998;
52
372-378
44
Lein M, Kwiatkowski M, Semjonow A et al.
A multicenter clinical trial on the use of complexed prostate specific antigen in
low prostate specific antigen concentrations.
J Urol.
2003;
170
1175-1179
45
Stephan C, Schnorr D, Loening S A et al.
Re: Roddam AW, Duffy MJ, Hamdy FC et al. Use of prostate-specific antigen (PSA) isoforms
for the detection of prostate cancer in men with a PSA level of 2–10 ng / ml: systematic
review and meta-analysis.
Eur Urol.
2005;
48
386-99
1059-1060
46
Mikolajczyk S D, Grauer L S, Millar L S et al.
A precursor form of PSA (pPSA) is a component of the free PSA in prostate cancer serum.
Urology.
1997;
50
710-714
47
Peter J, Unverzagt C, Krogh T N et al.
Identification of precursor forms of free prostate-specific antigen in serum of prostate
cancer patients by immunosorption and mass spectrometry.
Cancer Res.
2001;
61
957-962
48
Bangma C H, Wildhagen M F, Yurdakul G et al.
The value of (–7, –5)pro-prostate-specific antigen and human kallikrein-2 as serum
markers for grading prostate cancer.
BJU Int.
2004;
93
720-724
49
Lein M, Semjonow A, Graefen M et al.
A multicenter clinical trial on the use of (–5, –7) pro prostate specific antigen.
J Urol.
2005;
174
2150-2153
50
Stephan C, Meyer H A, Paul E M et al.
Serum (–5, –7) proPSA for distinguishing stage and grade of prostate cancer.
Anticancer Res.
2007;
27
1833-1836
51
Catalona W J, Bartsch G, Rittenhouse H G et al.
Serum pro prostate specific antigen improves cancer detection compared to free and
complexed prostate specific antigen in men with prostate specific antigen 2 to 4 ng / ml.
J Urol.
2003;
170
2181-2185
52
Catalona W J, Bartsch G, Rittenhouse H G et al.
Serum pro-prostate specific antigen preferentially detects aggressive prostate cancers
in men with 2 to 4 ng / ml prostate specific antigen.
J Urol.
2004;
171
2239-2244
53
Sokoll L J, Wang Y, Feng Z et al.
[–2]proenzyme prostate specific antigen for prostate cancer detection: a national
cancer institute early detection research network validation study.
J Urol.
2008;
180
539-543
54
Mikolajczyk S D, Rittenhouse H G.
Pro PSA: a more cancer specific form of prostate specific antigen for the early detection
of prostate cancer.
Keio J Med.
2003;
52
86-91
55
Peyromaure M, Fulla Y, Debre B et al.
Pro PSA: a “pro cancer” form of PSA?.
Med Hypotheses.
2005;
64
92-95
56
Mikolajczyk S D, Millar L S, Wang T J et al.
“BPSA”, a specific molecular form of free prostate-specific antigen, is found predominantly
in the transition zone of patients with nodular benign prostatic hyperplasia.
Urology.
2000;
55
41-45
57
Wang T J, Slawin K M, Rittenhouse H G et al.
Benign prostatic hyperplasia-associated prostate-specific antigen (BPSA) shows unique
immunoreactivity with anti-PSA monoclonal antibodies.
Eur J Biochem.
2000;
267
4040-4045
58
Canto E I, Singh H, Shariat S F et al.
Serum BPSA outperforms both total PSA and free PSA as a predictor of prostatic enlargement
in men without prostate cancer.
Urology.
2004;
63
905-910
59
Linton H J, Marks L S, Millar L S et al.
Benign prostate-specific antigen (BPSA) in serum is increased in benign prostate disease.
Clin Chem.
2003;
49
253-259
60
Slawin K M, Shariat S, Canto E.
BPSA: A novel serum marker for benign prostatic hyperplasia.
Rev Urol.
2005;
7 Suppl 8
S52-S56
61
Stephan C, Cammann H, Deger S et al.
BPHA (bPSA) improves detection of prostate cancer in an artificial neural network.
Urology.
2009;
, online available
62
de Vries S H, Raaijmakers R, Blijenberg B G et al.
Additional use of [–2] precursor prostate-specific antigen and “benign” PSA at diagnosis
in screen-detected prostate cancer.
Urology.
2005;
65
926-930
63
Mikolajczyk S D, Marks L S, Partin A W et al.
Free prostate-specific antigen in serum is becoming more complex.
Urology.
2002;
59
797-802
64
Nurmikko P, Vaisanen V, Piironen T et al.
Production and characterization of novel anti-prostate-specific antigen (PSA) monoclonal
antibodies that do not detect internally cleaved Lys145–Lys146 inactive PSA.
Clin Chem.
2000;
46
1610-1618
65
Nurmikko P, Pettersson K, Piironen T et al.
Discrimination of prostate cancer from benign disease by plasma measurement of intact,
free prostate-specific antigen lacking an internal cleavage site at Lys145–Lys146.
Clin Chem.
2001;
47
1415-1423
66
Steuber T, Nurmikko P, Haese A et al.
Discrimination of benign from malignant prostatic disease by selective measurements
of single chain, intact free prostate specific antigen.
J Urol.
2002;
168
1917-1922
67
Chun F K, de la T A, van P H et al.
Prostate Cancer Gene 3 (PCA3): Development and Internal Validation of a Novel Biopsy
Nomogram.
Eur Urol.
2009;
, online available
68
Yousef G M, Diamandis E P.
The new human tissue kallikrein gene family: structure, function, and association
to disease.
Endocr Rev.
2001;
22
184-204
69
Lundwall A, Band V, Blaber M et al.
A comprehensive nomenclature for serine proteases with homology to tissue kallikreins.
Biol Chem.
2006;
387
637-641
70
Kwiatkowski M K, Recker F, Piironen T et al.
In prostatism patients the ratio of human glandular kallikrein to free PSA improves
the discrimination between prostate cancer and benign hyperplasia within the diagnostic
“gray zone” of total PSA 4 to 10 ng / mL.
Urology.
1998;
52
360-365
71
Partin A W, Catalona W J, Finlay J A et al.
Use of human glandular kallikrein 2 for the detection of prostate cancer: preliminary
analysis.
Urology.
1999;
54
839-845
72
Nakamura T, Scorilas A, Stephan C et al.
The usefulness of serum human kallikrein 11 for discriminating between prostate cancer
and benign prostatic hyperplasia.
Cancer Res.
2003;
63
6543-6546
73
Rabien A, Fritzsche F, Jung M et al.
High expression of KLK14 in prostatic adenocarcinoma is associated with elevated risk
of prostate-specific antigen relapse.
Tumour Biol.
2008;
29
1-8
74
Brown D A, Stephan C, Ward R L et al.
Measurement of serum levels of macrophage inhibitory cytokine 1 combined with prostate-specific
antigen improves prostate cancer diagnosis.
Clin Cancer Res.
2006;
12
89-96
75
Stephan C, Xu C, Brown D A et al.
Three new serum markers for prostate cancer detection within a percent free PSA-based
artificial neural network.
Prostate.
2006;
66
651-659
76
Meyer-Siegler K L, Bellino M A, Tannenbaum M.
Macrophage migration inhibitory factor evaluation compared with prostate specific
antigen as a biomarker in patients with prostate carcinoma.
Cancer.
2002;
94
1449-1456
77
Michael A, Stephan C, Kristiansen G et al.
Diagnostic validity of macrophage migration inhibitory factor in serum of patients
with prostate cancer: a re-evaluation.
Prostate.
2005;
62
34-39
78
Tahir S A, Ren C, Timme T L et al.
Development of an immunoassay for serum caveolin-1: a novel biomarker for prostate
cancer.
Clin Cancer Res.
2003;
9
3653-3659
79
Tahir S A, Frolov A, Hayes T G et al.
Preoperative serum caveolin-1 as a prognostic marker for recurrence in a radical prostatectomy
cohort.
Clin Cancer Res.
2006;
12
4872-4875
80
Paul B, Dhir R, Landsittel D et al.
Detection of prostate cancer with a blood-based assay for early prostate cancer antigen.
Cancer Res.
2005;
65
4097-4100
81
Leman E S, Cannon G W, Trock B J et al.
EPCA-2: a highly specific serum marker for prostate cancer.
Urology.
2007;
69
714-720
82
Diamandis E P.
POINT: EPCA-2: a promising new serum biomarker for prostatic carcinoma?.
Clin Biochem.
2007;
40
1437-1439
83
Leman E S, Magheli A, Cannon G W et al.
Analysis of a second EPCA-2 epitope as a serum test for prostate cancer.
J Urol [Suppl].
2008;
179
704
84
Stattin P, Rinaldi S, Biessy C et al.
High levels of circulating insulin-like growth factor-I increase prostate cancer risk:
a prospective study in a population-based nonscreened cohort.
J Clin Oncol.
2004;
22
3104-3112
85
Finne P, Auvinen A, Koistinen H et al.
Insulin-like growth factor I is not a useful marker of prostate cancer in men with
elevated levels of prostate-specific antigen.
J Clin Endocrinol Metab.
2000;
85
2744-2747
86
Oliver S E, Holly J, Peters T J et al.
Measurement of insulin-like growth factor axis does not enhance specificity of PSA-based
prostate cancer screening.
Urology.
2004;
64
317-322
87
Roddam A W, Allen N E, Appleby P et al.
Insulin-like growth factors, their binding proteins, and prostate cancer risk: analysis
of individual patient data from 12 prospective studies.
Ann Intern Med.
2008;
149
461-468
88
von der Kammer H, Jurincic-Winkler C, Horlbeck R.
The potential use of prostatic secretory protein of 94 amino acid residues (PSP94)
as a serum marker for prostatic tumor.
Urol Res.
1993;
21
227-233
89
Nam R K, Reeves J R, Toi A et al.
A novel serum marker, total prostate secretory protein of 94 amino acids, improves
prostate cancer detection and helps identify high grade cancers at diagnosis.
J Urol.
2006;
175
1291-1297
90
Reeves J R, Dulude H, Panchal C et al.
Prognostic value of prostate secretory protein of 94 amino acids and its binding protein
after radical prostatectomy.
Clin Cancer Res.
2006;
12
6018-6022
91
Wozny W, Schroer K, Schwall G P et al.
Differential radioactive quantification of protein abundance ratios between benign
and malignant prostate tissues: cancer association of annexin A3.
Proteomics.
2007;
7
313-322
92
Kollermann J, Schlomm T, Bang H et al.
Expression and prognostic relevance of Annexin A3 in prostate cancer.
Eur Urol.
2008;
54
1314-1323
93
Schostak M, Schwall G P, Poznanovic S et al.
Annexin A3 in Urine: A highly specific noninvasive marker for prostate cancer early
detection.
J Urol.
2009;
181
343-353
94
Hessels D, Klein Gunnewiek J M, van Oort I et al.
DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer.
Eur Urol.
2003;
44
8-15
95
Groskopf J, Aubin S M, Deras I L et al.
APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis
of prostate cancer.
Clin Chem.
2006;
52
1089-1095
96
Haese A, de la Taille A, van Poppel H et al.
Clinical Utility of the PCA3 urine assay in european men scheduled for repeat biopsy.
Eur Urol.
2008;
54
1081-1088
97
de la Taille A, Irani J, de Reijke T M et al.
Can Prostate cancer gene (PCA3) predict initial biopsy outcome? [Abstract].
J Urol [Suppl].
2009;
181
655
,
98
Nakanishi H, Groskopf J, Fritsche H A et al.
PCA3 molecular urine assay correlates with prostate cancer tumor volume: implication
in selecting candidates for active surveillance.
J Urol.
2008;
179
1804-1809
99
Whitman E J, Groskopf J, Ali A et al.
PCA3 score before radical prostatectomy predicts extracapsular extension and tumor
volume.
J Urol.
2008;
180
1975-1978
100
van Gils M P, Hessels D, Hulsbergen-van de Kaa C A et al.
Detailed analysis of histopathological parameters in radical prostatectomy specimens
and PCA3 urine test results.
Prostate.
2008;
68
1215-1222
101
Schilling D A, Hennenlotter J, von Weyhern C H et al.
Does the PCA3 score depend on tumor localization within the prostate? – A morphometric
computer animated analysis.
J Urol [Suppl].
2009;
181
655
102
Varambally S, Laxman B, Mehra R et al.
Golgi protein GOLM1 is a tissue and urine biomarker of prostate cancer.
Neoplasia.
2008;
10
1285-1294
103
Sreekumar A, Poisson L M, Rajendiran T M et al.
Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression.
Nature.
2009;
457
910-914
104
Jung K.
Re: The Metabolites Citrate, Myo-Inositol, and Spermine Are Potential Age-Independent
Markers of Prostate Cancer in Human Expressed Prostatic Secretions.
European Urology.
2008;
54
1198-1199
105
Chun F K, Karakiewicz P I, Briganti A et al.
A critical appraisal of logistic regression-based nomograms, artificial neural networks,
classification and regression-tree models, look-up tables and risk-group stratification
models for prostate cancer.
BJU Int.
2007;
99
794-800
106
Hernandez D J, Han M, Humphreys E B et al.
Predicting the outcome of prostate biopsy: comparison of a novel logistic regression-based
model, the prostate cancer risk calculator, and prostate-specific antigen level alone.
BJU Int.
2008;
, online available
107
Shariat S F, Capitanio U, Jeldres C et al.
Can nomograms be superior to other prediction tools?.
BJU Int.
2008;
, online available
108
Chun F K, Graefen M, Briganti A et al.
Initial biopsy outcome prediction--head-to-head comparison of a logistic regression-based
nomogram versus artificial neural network.
Eur Urol.
2007;
51
1236-1240
109
Finne P, Finne R, Bangma C et al.
Algorithms based on prostate-specific antigen (PSA), free PSA, digital rectal examination
and prostate volume reduce false-positive PSA results in prostate cancer screening.
Int J Cancer.
2004;
111
310-315
110
Kawakami S, Numao N, Okubo Y et al.
Development, validation, and head-to-head comparison of logistic regression-based
nomograms and artificial neural network models predicting prostate cancer on initial
extended biopsy.
Eur Urol.
2008;
54
601-611
111
Djavan B, Remzi M, Zlotta A et al.
Novel artificial neural network for early detection of prostate cancer.
J Clin Oncol.
2002;
20
921-929
112
Finne P, Finne R, Auvinen A et al.
Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron
network.
Urology.
2000;
56
418-422
113
Kalra P, Togami J, Bansal B SG et al.
A neurocomputational model for prostate carcinoma detection.
Cancer.
2003;
98
1849-1854
114
Dreiseitl S, Ohno-Machado L.
Logistic regression and artificial neural network classification models: a methodology
review.
J Biomed Inform.
2002;
35
352-359
115
Sargent D J.
Comparison of artificial neural networks with other statistical approaches.
Cancer.
2001;
91
1636-1642
116
Chun F KH, Karakiewicz P I, Briganti A et al.
Significance of PSA inter-assay variability on clinical prostate cancer detection-aids
[Abstract].
J Urol [Suppl].
2008;
179
722
117
Stephan C, Meyer H A, Cammann H et al.
Re: Chun FK-H, Graefen M, Briganti A, Gallina A, Hopp J, Kattan MW, Huland H, Karakiewicz PI.
Initial biopsy outcome prediction – head-to-head comparison of a logistic regression-based
nomogram versus artificial neural network.
Eur Urol.
2007;
51
1236-1243
1446-1447
118
Snow P B, Smith D S, Catalona W J.
Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot
study.
J Urol.
1994;
152
1923-1926
119
Babaian R J, Fritsche H, Ayala A et al.
Performance of a neural network in detecting prostate cancer in the prostate-specific
antigen reflex range of 2.5 to 4.0 ng / mL.
Urology.
2000;
56
1000-1006
120
Stephan C, Jung K, Cammann H et al.
An artificial neural network considerably improves the diagnostic power of percent
free prostate-specific antigen in prostate cancer diagnosis: Results of a 5-year investigation.
Int J Cancer.
2002;
99
466-473
121
Stephan C, Cammann H, Meyer H A et al.
PSA and new biomarkers within multivariate models to improve early detection of prostate
cancer.
Cancer Lett.
2007;
249
18-29
122
Schroder F, Kattan M W.
The Comparability of Models for Predicting the Risk of a Positive Prostate Biopsy
with Prostate-Specific Antigen Alone: A Systematic Review.
Eur Urol.
2008;
54
274-290
123
Stephan C, Cammann H, Meyer H A et al.
An artificial neural network for five different assay systems of prostate-specific
antigen in prostate cancer diagnostics.
BJU Int.
2008;
102
799-805
124
Stephan C, Xu C, Cammann H et al.
Assay-specific artificial neural networks for five different PSA assays and populations
with PSA 2–10 ng / ml in 4480 men.
World J Urol.
2007;
25
95-103
125
Stephan C, Xu C, Finne P et al.
Comparison of two different artificial neural networks for prostate biopsy indication
in two different patient populations.
Urology.
2007;
70
596-601
126
Keller T, Butz H, Lein M et al.
Discordance analysis characteristics as a new method to compare the diagnostic accuracy
of tests: example of complexed versus total prostate-specific antigen.
Clin Chem.
2005;
51
532-539
127
Stephan C, Meyer H A, Kwiatkowski M et al.
A (–5, –7) ProPSA based artificial neural network to detect prostate cancer.
Eur Urol.
2006;
50
1014-1020
128
Stephan C, Kahrs A M, Cammann H et al.
A [–2]proPSA-based artificial neural network significantly improves differentiation
between prostate cancer and benign prostatic diseases.
Prostate.
2009;
69
198-207
129
Vickers A J, Cronin A M, Aus G et al.
A panel of kallikrein markers can reduce unnecessary biopsy for prostate cancer: data
from the European Randomized Study of Prostate Cancer Screening in Goteborg, Sweden.
BMC Med.
2008;
6
19
130
Emami N, Diamandis E P.
Utility of kallikrein-related peptidases (KLKs) as cancer biomarkers.
Clin Chem.
2008;
54
1600-1607
131
Parekh D J, Ankerst D P, Troyer D et al.
Biomarkers for prostate cancer detection.
J Urol.
2007;
178
2252-2259
132
Stephan C, Jung K, Soosaipillai A et al.
Clinical utility of human glandular kallikrein 2 within a neural network for prostate
cancer detection.
BJU Int.
2005;
96
521-527
133
Stephan C, Meyer H A, Cammann H et al.
Improved prostate cancer detection with a human kallikrein 11 and percentage free
PSA-based artificial neural network.
Biol Chem.
2006;
387
801-805
134
Scorilas A, Plebani M, Mazza S et al.
Serum human glandular kallikrein (hK2) and insulin-like growth factor 1 (IGF-1) improve
the discrimination between prostate cancer and benign prostatic hyperplasia in combination
with total and %free PSA.
Prostate.
2003;
54
220-229
135
Zhigang Z, Jieming L, Su L et al.
Serum insulin-like growth factor I / free prostate specific antigen (IGF-I / fPSA)
ratio enhances prostate cancer detection in men with total PSA 4.0–10.0 ng / ml.
J Surg Oncol.
2007;
96
54-61
136
Aubin S M, Miick S, Williamsen S et al.
Improved prediction of prostate biopsy outcome using PCA3, TMPRSS2:ERG gene fusion
and serum PSA.
J Urol [Suppl].
2008;
179
725
137
Hessels D, Smit F P, Verhaegh G W et al.
Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary
sediments may improve diagnosis of prostate cancer.
Clin Cancer Res.
2007;
13
5103-5108
PD Dr. C. Stephan
Klinik und Poliklinik für Urologie · Charité – Universitätsmedizin Berlin · CCM
Charitéplatz 1
10117 Berlin
Germany
Phone: +49 / 30 / 4 50 61 51 59
Fax: +49 / 30 / 4 50 51 59 04
Email: carsten.stephan@charite.de